My-library.info
Все категории

Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е]

На электронном книжном портале my-library.info можно читать бесплатно книги онлайн без регистрации, в том числе Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е]. Жанр: Радиотехника издательство -, год 2004. В онлайн доступе вы получите полную версию книги с кратким содержанием для ознакомления, сможете читать аннотацию к книге (предисловие), увидеть рецензии тех, кто произведение уже прочитал и их экспертное мнение о прочитанном.
Кроме того, в библиотеке онлайн my-library.info вы найдете много новинок, которые заслуживают вашего внимания.

Название:
Искусство схемотехники. Том 1 [Изд.4-е]
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
274
Читать онлайн
Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е]

Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е] краткое содержание

Пауль Хоровиц - Искусство схемотехники. Том 1 [Изд.4-е] - описание и краткое содержание, автор Пауль Хоровиц, читайте бесплатно онлайн на сайте электронной библиотеки My-Library.Info
Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры; внимание читателя сосредоточивается на тонких аспектах проектирования и применения электронных схем.На русском языке издается в трех томах. Том 1 содержит сведения об элементах схем, транзисторах, операционных усилителях, активных фильтрах, источниках питания, полевых транзисторах.Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов.

Искусство схемотехники. Том 1 [Изд.4-е] читать онлайн бесплатно

Искусство схемотехники. Том 1 [Изд.4-е] - читать книгу онлайн бесплатно, автор Пауль Хоровиц

Обязательно следует разобраться в том, как работает транзистор, даже если вам придется пользоваться в основном интегральными схемами. Дело в том, что, для того чтобы собрать электронное устройство из интегральных схем и подключить его к внешним цепям, необходимо знать входные и выходные характеристики каждой используемой ИС. Кроме того, транзистор служит основой построения межсоединений, как внутренних (между ИС), так и внешних. И наконец, иногда (и даже довольно часто) случается, что подходящей ИС промышленность не выпускает и приходится прибегать к схемам, собранным из дискретных компонентов. Как вы сами вскоре убедитесь, транзисторы сами по себе очень интересны, и ознакомление с их работой доставит вам удовольствие.

Мы будем рассматривать транзисторы совершенно не так, как авторы других книг. Обычно изучая транзистор, пользуются его эквивалентной схемой и h-параметрами. На наш взгляд, такой подход сложен и надуман. И дело не только в том, что, глядя на мудреные уравнения, вы едва ли поймете, как работает схема, скорее всего вы будете иметь смутное представление о параметрах транзистора, их значениях и самое главное диапазонах изменения.

Мы предлагаем вам другой подход. В этой главе мы построим простую модель транзистора и с ее помощью создадим несколько схем. Как только начнут проявляться ограничения модели, дополним ее с учетом уравнений Эберса-Молла. Полученная таким образом модель даст правильное представление о работе транзистора; с ее помощью вы сможете создавать самые хорошие схемы, не прибегая к большим расчетам. Кроме того, характеристики ваших схем не будут серьезно зависеть от таких неуправляемых параметров транзистора как, например, коэффициент усиления по току.

И наконец, несколько слов о принятых в инженерной практике условностях.

Напряжение на выводе транзистора, взятое по отношению к потенциалу земли, обозначается буквенным индексом (К, Б или Э): например, Uк - это напряжение на коллекторе. Напряжение между выводами обозначается двойным индексом, например, UБЭ - это напряжение между базой и эмиттером. Если индекс образован двумя одинаковыми буквами, то это — напряжение источника питания: UKK - это напряжение питания (обычно положительное) коллектора, UЭЭ — напряжение питания (обычно отрицательное) эмиттера.


2.01. Первая модель транзистора: усилитель тока

Итак, начнем. Транзистор — это электронный прибор, имеющий три вывода (рис. 2.1).



Рис. 2.1. Условные обозначения транзистора и маленькие транзисторные модули.


Различают транзисторы n-р-n- и p-n-p-типа. Транзисторы n-р-n-типа, подчиняются следующим правилам (для транзисторов р-n-р-типа, правила сохраняются, но следует учесть, что полярности напряжений должны быть изменены на противоположные):

1. Коллектор имеет более положительный потенциал, чем эмиттер.

2. Цепи база-эмиттер и база-коллектор работают как диоды (рис. 2.2). Обычно диод база-эмиттер открыт, а диод база-коллектор смещен в обратном направлении, т. е. приложенное напряжение препятствует протеканию тока через, него.



Рис. 2.2. Выводы транзистора с точки зрения омметра.


3. Каждый транзистор характеризуется максимальными значениями IK, IБ и UКЭ. За превышение этих значений приходится расплачиваться новым транзистором (типичные значения приведены в табл. 2.1).

Следует помнить и о предельных значениях других параметров, например рассеиваемой мощности (IКЭUКЭ), температуры, UБЭ и др.

4. Если правила 1–3 соблюдены, то ток  прямо пропорционален току и можно записать следующее соотношение:

IK = h21ЭIБ = βIБ

где h21Э - коэффициент усиления по току (обозначаемый также β), обычно составляет около 100. Токи IK и втекают в эмиттер. Замечание: коллекторный ток не связан с прямой проводимостью диода база-коллектор; этот диод смещен в обратном направлении. Будем просто считать, что «транзистор так работает».

Правило 4 определяет основное свойство транзистора: небольшой ток базы управляет большим током коллектора.

Запомните: параметр h21Э нельзя назвать «удобным»; для различных транзисторов одного и того же типа его величина может изменяться от 50 до 250. Он зависит также от тока коллектора, напряжения между коллектором и эмиттером, и температуры. Схему можно считать плохой, если на ее характеристики влияет величина параметра h21Э.

Рассмотрим правило 2. Из него следует, что напряжение между базой и эмиттером нельзя увеличивать неограниченно, так как если потенциал базы будет превышать потенциал эмиттера более чем на 0,6–0,8 В (прямое напряжение диода), то возникнет очень большой ток. Следовательно, в работающем транзисторе напряжения на базе и эмиттере связаны следующим соотношением: = + 0,6 В ( + UБЭ). Еще раз уточним, что полярности напряжений указаны для транзисторов n-р-n-типа, их следует изменить на противоположные для транзисторов р-n-р-типа.

Обращаем ваше внимание на то, что, как уже отмечалось, ток коллектора не связан с проводимостью диода. Дело в том, что обычно к диоду коллектор-база приложено обратное напряжение. Более того, ток коллектора очень мало зависит от напряжения на коллекторе (этот диод подобен небольшому источнику тока), в то время как прямой ток, а следовательно, и проводимость диода резко увеличиваются при увеличении приложенного напряжения.

Некоторые основные транзисторные схемы

2.02. Транзисторный переключатель

Рассмотрим схему, изображенную на рис. 2.3.



Рис. 2.3. Пример транзисторного переключателя.


Эта схема, которая с помощью небольшого управляющего тока может создавать в другой схеме ток значительно большей величины, называется транзисторным переключателем. Его работу помогают понять правила, приведенные в предыдущем разделе. Когда контакт переключателя разомкнут, ток базы отсутствует. Значит, как следует из правила 4, отсутствует и ток коллектора. Лампа не горит.

Когда переключатель замкнут, напряжение на базе составляет 0,6 В (диод база-эмиттер открыт). Падение напряжения на резисторе базы составляет 9,4 В, следовательно, ток базы равен 9,4 мА. Если, не подумав, воспользоваться правилом 4, то можно получить неправильный результат: IK = 940 мА (для типичного значения β = 100). В чем же ошибка?

Дело в том, что правило 4 действует лишь в том случае, если соблюдено правило 1; если ток коллектора достиг 100 мА, то падение напряжения на лампе составляет 10 В. Для того чтобы ток был еще больше, нужно чтобы потенциал коллектора был меньше потенциала земли. Но транзистор не может перейти в такое состояние. Когда потенциал коллектора приближается к потенциалу земли, транзистор переходит в режим насыщения (типичные значения напряжения насыщения лежат в диапазоне 0,05-0,2 В, см. приложение Ж) и изменение потенциала коллектора прекращается. В нашем случае лампа загорается, когда падение напряжения на ней составляет 10 В. Если на базу подается избыточный сигнал (мы использовали ток 9,4 мА, хотя достаточно было бы иметь 1,0 мА), то схема не тратит этот избыток; в нашем случае это очень выгодно, так как через лампу протекает большой ток, когда она находится в холодном состоянии (сопротивление лампы в холодном состоянии в 5-10 раз меньше, чем при протекании рабочего тока). Кроме того, при небольших напряжениях между коллектором и базой уменьшается коэффициент β, а значит, для того чтобы перевести транзистор в режим насыщения, нужен дополнительный ток базы (см. приложение Ж). Иногда к базе подключают резистор (с сопротивлением, например, 10 кОм), для того чтобы при разомкнутом переключателе потенциал базы наверняка был равен потенциалу земли. Этот резистор не влияет на работу схемы при замкнутом переключателе, так как через него протекает лишь малая доля тока (0,06 мА).

При разработке транзисторных переключателей вам пригодятся следующие рекомендации:

1. Сопротивление резистора в цепи базы лучше брать поменьше, тогда избыточный базовый ток будет больше. Эта рекомендация особенно полезна для схем, управляющих включением ламп; так как при низком значении UКЭ уменьшается и коэффициент β. О ней следует помнить и при разработке быстродействующих переключателей, так как на очень высоких частотах (порядка мегагерц) проявляются емкостные эффекты и уменьшается значение коэффициента β. Для увеличения быстродействия к базовому резистору параллельно подключают конденсатор.


Пауль Хоровиц читать все книги автора по порядку

Пауль Хоровиц - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки My-Library.Info.


Искусство схемотехники. Том 1 [Изд.4-е] отзывы

Отзывы читателей о книге Искусство схемотехники. Том 1 [Изд.4-е], автор: Пауль Хоровиц. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.